Unit 8.1, Student Goals and Glossary

Learning Goals

Section 1: Transformations

Lesson 1: Transformers

Describing Movement in the Plane

I can describe how a figure moves and turns to get from one position to another.

Lesson 2: Spinning, Flipping, Sliding

Naming Transformations

I know the difference between translations, rotations, and reflections.

Lesson 3: Transformation Golf

Sequences of Transformations

I can decide which type of transformation will work to move one figure to another.

Lesson 4: Moving Day

Transformations on Grids

- I can use the terms translation, rotation, and reflection to precisely describe transformations on a grid.
- I can use a grid to perform a translation, rotation, or reflection.

Lesson 5: Getting Coordinated

Using Coordinates to Describe Transformations

I can apply transformations to points on a grid if I know their coordinates.

Lesson 6: Connecting the Dots

Describing Transformations Precisely

I can apply transformations to a polygon on a grid if I know the coordinates of its vertices.

Section 2: Defining Congruence

Lesson 7: Are They the Same?

Defining Congruence

- I can determine whether or not two figures are congruent just by looking.
- Explain whether or not congruent corresponding sides is enough information to determine if polygons are congruent.

Lesson 8: No Bending, No Stretching

Rigid Transformations

I can describe the effects of a rigid transformation on the lengths and angles of a polygon.

Unit 8.1, Student Goals and Glossary

Lesson 9: Are They Congruent?

Rigid Transformations and Congruent Figures

- I can decide whether or not two figures are congruent using rigid transformations.
- I understand whether or not congruent sides are enough to determine if two polygons are congruent.

Section 3: Applying Congruence

Lesson 10: Transforming Angles

Angle Measures in Parallel Lines

- I can describe the effects of a rigid transformation on a pair of parallel lines.
- If I have a pair of vertical angles and know the angle measure of one of them, I can use vertical angles to determine missing angle measurements.
- I can identify congruent angles on two parallel lines cut by a transversal and use that to determine missing angle measurements.

Lesson 11: Tearing It Up

Angle Sums in Triangles

If I know two of the angle measures in a triangle, I can find the third angle measure.

Lesson 12: Puzzling It Out

Proving the Triangle Sum Theorem

□ I can explain using pictures why the sum of the angles in any triangle is 180 degrees.

Lesson 13: Tessellate

Using Transformations to Create Art

I can use rigid transformations to make interesting repeating patterns of figures.

Unit 8.1, Student Goals and Glossary

Glossary

Term	Definition
clockwise	Clockwise means to turn in the same direction as the hands of a clock. It is a turn to the right.
corresponding	When part of an original figure matches up with part of a copy, we call them corresponding parts. These could be points, segments, angles, or distances.
congruent	One figure is congruent to another if it can be moved with translations, rotations, and reflections to fit exactly over the other.
counterclockwise	Counterclockwise means to turn opposite of the way the hands of a clock turn.
image	An image is the result of translations, rotations, and reflections on an object. Every part of the original object moves in the same way to match up with a part of the image.
reflection	A reflection across a line moves every point on a figure to a point directly on the opposite side of the line. The new point is the same distance from the line as it was in the original figure.
rigid transformation	A rigid transformation is a move that does not change any measurements of a figure. Translations, rotations, and reflections are rigid transformations, as is any sequence of these.

Unit 8.1, Student Goals and Glossary

rotation	A rotation moves every point on a figure around a center by a given angle in a specific direction.
sequence of transformations	A sequence of transformations is a set of translations, rotations, reflections, and dilations on a figure. The transformations are performed in a given order.
transformation	A transformation is a translation, rotation, reflection, or dilation, or a combination of these.
translation	A translation moves every point in a figure a given distance in a given direction.
transversal	A transversal is a line that cuts across parallel lines.
vertical angles	Vertical angles are opposite angles that share the same vertex. They are formed by a pair of intersecting lines. Their angle measures are equal.